
—

f i u ' c T U ' i - h f Cf ' f O Q C '& S O p C f hK
*3*7

l/o n U ° i^ ?

UJO <? S t°> W

Pitfalls of EDP-system-implementation and dissemination

- a case study

Wolfgang Giere

First it must be clarified that this paper cannot show a

new way out of the so-called software-crisis. It will not

end up with a new religion like chief-programmer-team,

top-down design, structured programming etc. Furthermore

this will not be a scientific paper in the sense of hypothesis

and verification by experiments. It is rather a collection

of common sense observations about the prerogatives of

successful implementation and dissemination drawn from a

bad experience.

function of user acceptance. Some of it's constituents

are listed in fig. 1. However, even when all of these basic

requirements are met, failures are frequent. Apparently there

are pitfalls. Lets try to identify them in a case study:

The case: In Summer 1969 we designed an online data-collection

System for medical record data. Twelve typewriters had to

be connected to a small process control-computer. This had to

check the identification, structure, and occurence of key-

words, had to sequentialize and output page by page on a

magnetic tape. (see fig. 2)

In Autumn 69 we ordered this System: Twelve IBM 731 typewriters

were connected to a SPC 12 General Automation Computer. The

System was delivered late,in March 1970. We tested it with

the two available secretaries and trained them. The Deutsche

Klinik für Diagnostik began operating on the 2nd of April

with ten additional secretaries in the central typing pool,

working from the Start with the data collection System. The

Software worked but we couldn't use the data: every time a

secretary hit two keys quickly one after another, codemixes

occurred in the Computer which eventually were recognized as

Interrupts and caused a system-breakdown. Every time the

secretaries typed slowly and rhythmically, the System worked

fine. A n-key roll-over-function was not available in those

days. The attempt to force the secretaries to better

sequentualize via mechanical means (blocking the simultaneous

depression of two keys) failed: The workload grew, the

secretaries would have had to adapt to a new typing-style and ’

rejected the System. The computernics worked around the clock,

the board of directors suddenly and arbitrarily with-drew

support. The System was removed, a complete "flop". (By the

way, the System of the Deutsche Klinik für Diagnostik as

a whole was a success. Otherwise I wouldn't dare to present

this material.)

Let's analyse the reasons for this failure lere the objectives

wrong? Today we know they were not. We use routinely text

acquisition Systems which now even control word by word

against thesauruses.

o Was the design of the System wrong; were twelve typewriters

too much for that process control Computer? Our calculations

based on real figures from other typing pools and were on t:

safe side. The failure was not due to miscalculations.

o Was the selection of the IBM typewriters wrong? We did not

choose the simple IBM Selectric but the heavy duty consol-

operator machines, the most sturdy design available. They

have been used as typewriters without trouble ever since.

o Was the choice of the General Automation SPC 12 wrong? It

best met our specifications. The meantime between failures

not due to interrupts by codemixes was reasonable, the

magnetic tape worked without major difficulties.

These were not the reasons for the failure. But, what were

the mistakes I can identify today und which rules could we

formulate from this experience?

First: the use of console operator tested machines by

secretaries in routine conditions led to difficulties.

° 1: Never design devices for routine use which have not

been tested for exactly that use before

Second: the assembly of 12 typewriters led to dynamic problems

o Rule 2: Never design complex Systems for routine use which

have not been tested as a System before!

Third: the tools of the Real Time Operating System were not

adequate for the attached data aquisition System,

o Rule 3: Never rely on operating-system-tools for routine

use which have not been tested and demonstrated for that

application before(or: Mistrust manuals)!

Fourth: The debugging of the application programs was

difficult due to the instability of the operating System.

- o Rule 4: Never program an application - especially not for

routine use - using non tested Software tools (or: Take

an "old" operating System for a new application)!

Fifth: The initially high motivation of the secretaries

changed to frustration as soon as they were severly hindered

in their daily work.

o Rule 5: Never implement new applications in routine work

before they have been demonstrated, tested and trained in

a non critical bypass-situation.

Sixth: The EDP staff was frustrated by inadequate criticism

and the untimely final end of the development,

o Rule 6 : Never risk the motivation of the development team

by interference during development phases, let them^go

their way ... but

Seventh: The bord of directors had no control. They

disconnected the efforts at a 98% stage.

Probably another 2 months of effort would have led to a
ß

success.

° Ru^e 7; Never implement a complex System without an

adequate control procedure based on milestones!

This was the case. Let us now assume the System was successfull;

implemented and accepted by the users. Could it then according

to our present knowledge have been disseminated? Lets answer

this question on the basis of rules drawn from actual experienc*

with dissemination. (Details see fig. 3.) We can summarize

this experience in rule 9 and 10.

° Rule 9: Never try dissemination without an experienced

marketing Organization. If you don't have it yourself,

cooperate with a Company and/or set up a user group!

° Rule 10: Never try dissemination without an exellent Service.

Make sure it reacts readily to user input!

Neither a marketing Organization nor Service were available
♦

at the DKD. Therefore,the answer to .the hypothetical question

whether a successful System could have been disseminated is no.

But again, lets assume, it was yes. Could then the disseminatioi

be successful? In other words: Is it sufficient to have an

operational System and dissemination support? Here is a list

of the accepted requirements for success in the medical

environment (fig. 3).

Back to the analysis of our failure:

A single compulsive programmier - an intelligent young man with

burning eyes (according to Weizenbaum) - of course used the SPC

12 assembly language to optimize straight forward the applicatic

The result:

- documentation - a problem,
- adaptability without him - none,
- use of a better operating System - never,
- transfer to a new hardware - impossible.

Lets summarize the experience from these mistakes in the rules

11 and 1 2.

o Rule 1 1 : Never let a single programmier implement a System.

Have at least a separate test-programmer, testing the actual

System on the basis of specifications!

SR

° Rule 12: Never allov; programming before System components

are isolated, interfaces are described and Provision for

changes is made. Take the highest-level standardized

language appropriate for the applicationl

We developed these twelve rules from the internal point of

view of the EDP-department on the basis of our experience.

From the same experience we can formulate advice for the

external point of view of financing and managing agencies for

their strategy!

Advice 1; Distinguish between development stages

- hardware-module (lab-model)
- hardware-systems (serie zero)
- operating Systems (tools)
- application Systems, tools (pilot use)
- applications (routine use)
- multiplication (dissemination).

Never allow the mix of different levels, even if

the implementation process is slowed down!

Remember the typical procedures, people and environment

connected to the levels!

The technical modul is developed in a lab oriented

toward basic research by an engineer as a demonstration

module. It never is ready, the engineer continous to strive

for a better solution.

The System is typically made by the technical laboratory

of a big Company as series zero, promoted by the head of

the development team aiming for a successful' Pilot

installation.

The operating System is (should be) designed "top down"

by Computer scientists, e.g. bright people from MIT,

Stanford, Bell laboratories and the like.

L

The application System is built "bottom up" and refined step

by step. The author must understand both the applications

and the tools, operating Systems in order to design and

promote an application System. He normally has an

inferiority complex against the Computer scientist and

the physician as well.

The application itself is "invented" by the user, the

physician, guided and (hopefully) helped by the Software

tools of the underlying layers (abstract machines).

He is not interested in the nice functional design of

the System, but in the smooth Operation of his application

in his daily environment. The System is best accepted if

flexible and not noticable. The design is nor top down

nor bottom up but by trial and error, iterative, adapting

to the growing experience of the user.

The dissemination is not done by the inventor of an

application. He is always interested in further refinement.

jSfe'sales representative in turn must offer a stable product.

There is only one solution: Afi definition of levels

(releases, versions). They must be milestones in the

continous flow of improvement. This is an organizational

Problem. Managers are needed for the task, not egg headed

Computer scientists or spirited pilot users.

As a result of this differentiation we come to:

Advice 2; Distinguish between different contractors

- fundamental research lab (hardware module)

- technical lab (hardware System)

- basic Software lab (operating System) '•?

- application Software lab (application System)

- pilot user (application)

- dissemination agency (distribution)

In respect to management we come to:

Advice 3: Distinguish between milestones and working phases.

Control at milestones, provide sufficient support during

development phases. Adjust funding and control to the

inherent dynamics of each development stage. Make sure that

control structures do work!
%

Hardware-, System- and software-tool development are more or

less internal tasks, while design and implementation of

application Systems need external control. (For this purpose

we designed in Germany together with R.W. Schuster procedures,

used for every federal grant in our field, the "Dokumentations

und Verfahrensrichtlinien für medizinische DV-Projekte, DVmed")

The multiplication of applications must be initiated by the

demand of the environment. New users have to engage themselves

to ensure thorough design and feed back. (In my department

today no application is re-implemented after the successful

pilot installation without financial and personal support

of the interested user.)

Multiplication does not need progranmers; it needs Service.

Make sure you are able to control its efficiency.

No application program should be distributed without

guaranteed feed-back. The information of user groups is

helpful. Periodic evaluation should be installed.

Last not least: Every implementor should dare to evaluate

his Systems performance on the basis of the specifications,
no dissemination should be tried without this and an

* - * ' i ' v .

assessment of "marketing" results.

I hope, that these thoughts lead to discussion and constructive

criticism in the light of other experiences.

| J . / * * * * * * '■•j » ’ ' • * * • * J . C T ' • i f ; ^ r V « - *-•
»■* * •< • - * ** ► J iSs- ’ , • . 4 r -k** • * ̂ ^ i r t, v •. ji . 1, **»/>• *

«

m
i

i

user acceptance

usefulness user interface

relialisation

- clear

.X^objectives

f

evaluation

^criteria

<-

\

flexibility ffcsC.

-data
integrity

- System
accessibility

-

^adaptability

jtresponsivness

(C Z

figZ-J

1 m ~v

Q K ✓ /O S
A C

/ - /

^ * j Ck C

dissemination •j

marketing Service

price

hardware

Software

_ orgware

information implementation maintenance

■7- do c ume n t a t i on
1

— reports, user
Statements

L demonstrations

(ĵ o b c/3 l~~

— tbJ })

- System
» generation
1

— installation

_ training

o

— feed back &
\ evaluation

-debugging &
. improvement
i
L. System
iadaptation
I

((^A - » ^
1

/ i . n 7 S 4 -

f — 'Cr-> /rf- • i)

"/T - Är J" C' ̂ \

fig
•i

success of implementation and dissemination

8

interfaces

- fewt

- £ £

- data

vertical
(sw.layers,
abstr Cüot-
machines)

horizontal
(func^ions, /<, t
Subsystems)

fig. i
t

Author

Prof.Dr.med. Wolfgang Giere

Abteilung für Dokumentation und Datenverarbeitung

Zentrum der Medizinischen Informatik

Klinikum der J.W. Goethe-Universität

Theodor-Stern-Kai 7

D-6000 Frankfurt/M. 70

